F4 C4

Periodic table

Antoine Lavoisier = divided the substances into four groups(Classification is not quite correct ,heat and light were grouped as gases.) J.W.Dobereiner = triads Lothar Meyer = plotted graph | elements relatively similar points of the curve are grouped in the same chemical family John Newlands = arranged in ascending order of atomic mass(Law of octave) Dmitri Mendeleev = atomic mass

Henry Moseley = proton number

Group number determined by the number of electrons in the outermost shells Period number indicates the number of electron-filled shells

Group 1(alkali metals)very reactive=stored under paraffin oil -Soft metal

-comparatively相对 boiling point and melting point(compare to other metals) -shiny ,silvery solid(room temperature) -low density(less than water) -good conductors of heat and electricity

-Going down the group, atomic radius increase

~the melting point and boiling points decrease : size of atom increases->attraction force between the atoms become weaker->less heat energy is needed to overcome these weak forces

~density increase : increase in atomic mass is bigger than increases in volume

~reactivity increase / electropositivity increase : atomic size increase->valence electron is further away from the nucleus->attraction force between nucleus and atom is weaker->easier to lose electron to form positive ions

Reaction:

With water=hydroxides + H2 (Na+H20->NaOH+H2) With air(burning)=solid metal oxide (4Na+O2->2Na2O) With non-metals(halogens)=halides salts (2Na+Cl2->2NaCl)

Group 2(Alkali earth metals)

```
Group 3-12(Transition metals)
-form coloured compound
```

Copper(II) ion,Cu2+=blue Iron(II) ion,Fe2+=Pale green Iron(III) ion,Fe3+=Brown Chromium(III) ion,Cr3+=Green Cobalt(II) ion,Co2+=pink

-variable oxidation states(have more than one oxidation number)
-active catalyst
Iron = Haber process(making ammonia)
Vanadium(5) oxide=Contact process(making of sulphuric acid)
Platinum=Ostwald process(making nitric acid)
Nicker=Hydrogenation(making of margarine)

-form complex ion(complex ion is a poly atomic cation/anion consisting of a central metal ion with other groups bounded to it,sap:(CoCl4)2--high melting point and boiling point -high densities

-good conductor of electricity and heat

-strong ,hard ,ductile拉伸 and malleable塑造

Group 17(halogens | diatomic)

-low melting and boiling point

~halogen consists of small molecules->attraction force between molecules are weak->less heat energy is needed to overcome these weak attraction force -low density

-poor conductors of heat and cannot conduct electricity

-soluble in organic solvents (Tetrachloromethane)

-coloured intensity increase down the group

Fluorine=pale yellow gas Chlorine=Greenish yellow gas Bromine=Reddish-brown liquid Iodine=Shiny purplish-black solid

Going down the group

~Melting point and boiling point increase : molecules get larger->attraction force between molecules become stronger->More heat energy is needed to overcome these stronger attractive force

~reactivity decrease : atoms become bigger->distance between nucleus and valence electron become further->attraction force between valence electron and the nucleus become weaker->more difficult to attract an electron to form negative ions.

Reaction:

With metals=ionic compound (2Fe+3Cl2->2FeCl3) With non-metal=covalent compound (H2+Cl2->2HCl) With water=acid With sodium hydroxide=water+salt

Group 18(noble gases | monoatomic)

Noble gases=chemically inert : electron arrangement are very stable/have a stable octet/ duple(Helium) electron arrangement | atom will not lose ,gain and share electron with other atoms -low melting and boiling point

~increase when going down the group : Size of atoms increase —>attractive force between the neighbouring atoms increase —>more heat energy is required to overcome these stronger forces of attraction between atoms while melting or boiling

-low density

~density increase when going down the Group 18 : increase in atomic mass is bigger compared to the increase in volume

-poor conductors of heat and electricity

-insoluble in water

Example:

Neon = advertising lights

Argon = to fill electric bulbs

Elements in period 3

When going across period 3:

-the number of protons in nucleus increases

-the attractive forces between the nucleus and electrons become stronger

-decrease in atomic size(electron are pulled closer toward the nucleus of the atom)

-increase in electronegativity

~atomic size become bigger->number of protons in the nucleus increases->attraction force between nucleus and electrons become stronger->the atoms have higher tendency to attract electrons to from an negative ions.

-melting point increases (sodium(group 1) to aluminium(group 13))

-melting point decrease (silicon(group14) to argon(group18))

-melting point of silicon is the highest(Strong three dimensional covalent bonds)

Chemical properties Na2O MgO | Al2O3 | SiO2 P4O10 SO3 Cl2O7

Basic. |Amphoteric | Acidic Basic oxide+water—>alkaline solutions(PH>7) ~react with acid Acidic oxide+water—>acid(PH<7) ~react with alkali/base

Amphoteric oxide(PH=7) have properties of a basic oxide and an acidic oxide(reacts both with acid and bases)

Metalloid(semi-metals)

H	IA				1ml	Te	xas Sta	te Tex	hnic	al Col	lege V	Vaco			U.A.	NA	VA	MA	MIA	He 40
Li	Be	Chemical Technology Department 1-800-792-8784 www.chemtech.org											8 B 10.8	C.	7 N 143	0 10.0	, F	10 Ne 212		
11 Na 23.0	Mg 343	1		10			110	MIR		MID					12 AI 27.0	94 Si 28.1	15 P 313	10 S 22.1	17 CI 35.5	** Ar 392
и К 29.1	Ca	S	c	22 T i		27 V	Čr	25 Mr 64.3	1	28 Fe	27 Co	38 Ni 59.7	23 Cu 63.5	20 Zn	31 Ga	22 Ge 728	33 As 743	34 Se 29.0	Br 23.5	** Kr
37 Rb	20 Sr 576	200	1	21 013		41 10	Mo	40 TC 91.5	: 1	Ru	Rh 102.9	*0 Pd	Âg	*2 Cd	În	90 Sn 118.7	51 Sb 121.8	12 Te 127.6	53 126.5	54 Xe
65 Cs	88 Ba 127.3	12	a	72 H 178.	F T	n Fa	W W 192.8	75 Re 1803		73 Os 180.2	77 Ir 1922	78 Pt 196.1	73 Au 197.3	Hg 200.5	81 TI 204.4	Pb 217.2	83 Bi 200.9	PO (216)	85 At (215)	8 Rn (222)
Fr (223)	Ra 225	Ac 227		104 R (351	F [15 10 120	50 50 (201)	Bh (394)	,	120 Hs (295)	109 Mt (205)	metalloid								
			C	Ce		Ň	d P	m Si 8) 150	62 Sm		i G	id T	ns Tb sea ar Bk	Dy	67 Ho 1649 Es	68 Er 167.3 100 Fm		n Y	78 700 700 182 No	21 Lu 175.0
			Th		Pa 2210	ů		p	Pu					ĉ						

have properties of metals and non-metals

Use:

-Chips for electronic devices

-solar cell(Silicon)

- -Lasers ,for compact disc player(Silicon)
- -light metals ,for camera(Silicon)